Lucas Symbolic Formulae and Generating Functions for Chebyshev Polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating functions of Chebyshev-like polynomials

In this short note, we give simple proofs of several results and conjectures formulated by Stolarsky and Tran concerning generating functions of some families of Chebyshev-like polynomials.

متن کامل

Discriminants of Chebyshev-like Polynomials and Their Generating Functions

In his paper of 2000, Kenneth B. Stolarsky made various observations and conjectures about discriminants and generating functions of certain types of Chebyshev-like polynomials. We prove several of these conjectures. One of our proofs involves Wilf-Zeilberger pairs and a contiguous relation for hypergeometric series.

متن کامل

Some Formulae for Bivariate Fibonacci and Lucas Polynomials

We derive a collection of identities for bivariate Fibonacci and Lu-cas polynomials using essentially a matrix approach as well as properties of such polynomials when the variables x and y are replaced by polynomials. A wealth of combinatorial identities can be obtained for selected values of the variables.

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Integral formulas for Chebyshev polynomials and the error term of interpolatory quadrature formulae for analytic functions

We evaluate explicitly the integrals ∫ 1 −1 πn(t)/(r ∓ t)dt, |r| = 1, with the πn being any one of the four Chebyshev polynomials of degree n. These integrals are subsequently used in order to obtain error bounds for interpolatory quadrature formulae with Chebyshev abscissae, when the function to be integrated is analytic in a domain containing [−1, 1] in its interior.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics, Gravitation and Cosmology

سال: 2021

ISSN: 2380-4327,2380-4335

DOI: 10.4236/jhepgc.2021.73052